Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs

We investigate the convergence rate of approximations by finite sums of rank-1 tensors of solutions of multi-parametric elliptic PDEs. Such PDEs arise, for example, in the parametric, deterministic reformulation of elliptic PDEs with random field inputs, based for example, on the M -term truncated Karhunen-Loève expansion. Our approach could be regarded as either a class of compressed approxima...

متن کامل

Tensor-structured methods for parameter dependent and stochastic elliptic PDEs

Modern methods of tensor-product decomposition allow an efficient data-sparse approximation of functions and operators in higher dimensions [5]. The recent quantics-TT (QTT) tensor method allows to represent the multidimensional data with log-volume complexity [1, 2, 3]. We discuss the convergence rate of the Tucker, canonical and QTT stochastic collocation tensor approximations to the solution...

متن کامل

Galerkin approximation for elliptic PDEs on spheres

We discuss a Galerkin approximation scheme for the elliptic partial differential equation −∆u+ ω2u = f on Sn ⊂ Rn+1. Here ∆ is the Laplace-Beltrami operator on Sn, ω is a non-zero constant and f belongs to C2k−2(Sn), where k ≥ n/4 + 1, k is an integer. The shifts of a spherical basis function φ with φ ∈ H τ (Sn) and τ > 2k ≥ n/2 + 2 are used to construct an approximate solution. An H1(Sn)error ...

متن کامل

Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an apriori error analysis for sparse tensor, space-time discretizations. The problem is reduced to a parametric family of deterministic initial boundary value problems on an infinite dimensional parameterspac...

متن کامل

Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs

Parametric partial differential equations are commonly used to model physical systems. They also arise when Wiener chaos expansions are used as an alternative to Monte Carlo when solving stochastic elliptic problems. This paper considers a model class of second order, linear, parametric, elliptic PDEs in a bounded domain D with coefficients depending on possibly countably many parameters. It sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2011

ISSN: 1064-8275,1095-7197

DOI: 10.1137/100785715